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Abstract

A variational formula is derived for the re–

flection coefficient of axial inductive strips

in rectangular waveguide. With a carefully

chosen current basis function incorporating the

edge condition, the computed results are in good

agreement with the measurement.

Introduction

An axial inductive strip is formed by in-
serting a metal strip in a rectangular waveguide
such that the strip surface is parallel to the

narrow waveguide wall (i.e., parallel to the E

plane). It is a common circuit element in the

design of planar circuits developed either on a

metal sheet [ 1] or on copper-coated substrates

[2]. For example, high-Q bandpass filters with

the inductive strips have been successfully de–

signed at microwave and millimeter–wave frequen–

ties [3,4,51.

The circuit parameters of the axial strip

have been studied by several authors [3,5,6,7].

In [5] and [7] the equivalent circuit reactance

are obtained with variational methods and in [3]
and [6] the scattering parameters are calculated

by the residue-calculua technique and by a mode-

matching method,

one by Chang and fi~7fh~e%~0~~~~~d~~&he
does not require complex matrix manipulation and
thus minimizes the numerical efforts. Their re-

sult, however, is valid only for narrow strips

because of the assumed constant current on the

strip. It is, therefore, the purpose of this

work to extend their approach by removing the

narrow-strip limitation. To this end, a varia-

tional formula is derived for the reflection

coefficient of the axial strip. With a carefully

chosen current basis function incorporating the

edge condition, the computed results are in good

agreement with the measurements for both narrow

and wide strips.

Formulation

The structure being studied here is shown in
Fig. 1. The strip is assumed to be perfectly con-

ducting (as is the waveguide) and infinitesimally

thin. The dielectric substrate, if any, is as-
summed to be lossless.

Consider a TE dominant–mode incident field.

Since both the fie~~ distribution and the discon-

tinuity structure have no variation in the y di-

rection, the scattered field will also have no

variation in y and lie only in the y direction.

The scattered field is then expressed by an in-

tegral equation in terms of the current distribu–

tion, J(z), on the strip. Applying the boundary

condition on the surface of the strip, we obtain

an expression for the reflection coefficient, R,

defined at z = o:
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where on(x) is the transverse field distribution

and y the propagation constant of n-th mode. x

&is th~ location of the strip and w the strip widt .

Using a method similar to Lewin [8], this expres–

sion is shown to be stationary for small variations

in J(z) about its correct value. The same formula

can also be derived by using the reaction concept

[9] .

With the expression in (l), the reflection co-

efficient can be evaluated using an approximate

current distribution. If a constant current is

used, we obtain the same results as in [7], valid

for narrow strips. For wide strips, a more appro-

priate current distribution must be used to obtain

accurate results. Considering the evanescent
field behavior in the guide section containing the

strip and incorporating the edge condition at Z=O,

we choose the following current distribution,

J(z) = e –~zj~ , where Y is chosen to be the pro-

pagation constant of the fundamental mode in the
evanescent guide section. Substituting this into
(l), we have

–-[ 1
2

$:(X1) . ~ ; ~_l)k.l I(Y@wlk-l

Y1
R=

k=l (2k-l)(k-l)! (2)

. $:(X1) ~ -
k-1

()[

~ Yn - Y ‘(Ynti)W k [(Ynti)W]m
z——— —. l-e

z 7EiYn+yYn+ Y k=~
ZT

“=1 L m-o ‘“ II
Although the evaluation of (2) involves a double
infinite summation, the summation with index k con-
verges very fast.

The edge condition at the other end of the

strip (i.e., at Z = W) can also be included in the
current distribution, however, this leads to an ex-
pression for R with a slowly converging summation,

especially when the strip width, w, is large. (In
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fact, it sometimes diverges due to numerical er-

rors. ) In practice, when w is large, the contri-

bution of the current near z = w to the reflection

coefficient is negligible. Therefore, the edge

condition at z = w is dropped.

Results

TO demonstrate the use of eqn. (l), we have

computed the reflection coefficient for a metal

sheet inserted in a Ka-band waveguide. Both the

uniform current distribution and that with a single
edge condtion are used. In addition, the same

structure is also analyzed with a mode-matching

method [6]. The results are shown in Fig. 2 at

a chosen frequency of 30 GHz. It shows that the

result with the uniform current is good up to

about 1 mm in this case. While the result with

eqn. (2) is in good agreement for the full range

with that obtained by mode-matching method.

The result is further verified by experiments.

Two-roil thick copper strips are cut and inserted

into an X–band test fixture. The scattering para-

meters are then measured across the full band

width (8–12 GHz) with an automated network analy-

zer system at the Microwave Lab., Naval Postgrad-

uate School. The resulting magnitude and phase

of the reflection coefficients are shown in Fig.

3, in comparison with the theoretical data by
eqn. (2) and by the mode-matching method. Good

agreement is observed.
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Fig.1 Geometry of axial
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inductive strips.
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Fig.2 Magnitude and phase of the reflection co-

efficient as a function of strip width at

30 GHz.
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Fig.3 Magnitude and phase of the reflection co-

efficient as a function of frequency.
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